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Graph	representation	learning	aids	numerous	
applications,	like	predicting	properties	of	molecules.	
These	applications	are	often	low-resource	because	
labels	are	expensive	to	acquire,	which	makes	them	
amenable	to	self-supervised	learning.	There	currently	
exist	self-supervised	methods	for	learning	graph-level	
representations,	including	InfoGraph (Sun	et	al.	
2019),	GPT-GNN	(Hu	et	al.	2020),	and	Context	
Prediction	(Hu	et	al.	2020).	

The	aforementioned	methods	fail	to	leverage	the	commonality	of	
significant	subgraphs	across	graphs	in	a	dataset,	known	as	motifs,	
which	often	indicate	graph-level	semantic	properties.	We	propose	a	
self-supervised	framework	called	MOTIF	that	simultaneously	trains	a	
graph	neural	network	(GNN)	to	learn	subgraph	representations	and	
clusters	these	representations	based	on	their	semantics	to	mine	
motifs	(see	Figure	1).	Thereby,	we	pretrain the	GNN	for	various	
graph-level	downstream	tasks,	like	molecular	property	prediction.

On	each	iteration	of	MOTIF,	we	obtain	subgraph	representations	by	
sampling	subgraphs	and	passing	these	subgraphs	through	the	GNN.	
We	subsequently	compute	an	optimal	soft	assignment	of	each	
subgraph	representation	to	clusters,	whose	centers	represent	motifs.	
Our	goal	is	to	optimize	the	cluster	assignments	by	adjusting	the	
cluster	centers	to	maximize	the	similarity	between	subgraph	
representations	and	the	centers.	Then,	the	optimal	cluster	
assignments	provide	us	with	pseudo-labels	with	which	we	can	
contrastively	train	the	GNN.

MOTIF	was	ineffective	when	employing	random	walk	or	k-hop	
neighbor	subgraph	sampling,	as	these	methods	solely	rely	on	
topology	without	considering	node	representations	learned	by	the	
GNN.	Instead,	to	sample	subgraphs	from	a	graph,	I	computed	the	
similarities	between	the	representations	of	adjacent	nodes	and	
normalized	them	to	produce	an	affinity	matrix.	I	then	applied	
spectral	clustering	with	the	affinity	matrix	to	recursively	bisect	the	
graph	into	subgraphs	of	multiple	sizes	(see	Figure	2).	

Figure	1. Illustration	of	MOTIF	framework.	MOTIF	
simultaneously	trains	a	GNN	to	learn	subgraph	representations	
and	clusters	these	representations	based	on	their	semantics	to	
mine	motifs.	MOTIF	also	employs	a	dynamic,	motif-guided	
segmenter that	exploits	node	representations	learned	by	the	
GNN	to	sample	motif-like	subgraphs.

Figure	2.	Motif-like	subgraphs	sampled	by	the	dynamic,	motif-
guided	segmenter vs.	subgraphs	sampled	by	random	walk	and	
k-hop	neighbor	samplers.	As	we	train	the	GNN,	the	
representations	of	nodes	belonging	to	the	same	motif	will	
become	more	similar,	so	the	sampler	will	reinforce	clustering	
and	vice	versa,	thereby	boosting	MOTIF's	performance. Research	conducted	in	collaboration	with	Shichang Zhang,	

Ziniu Hu,	and	Yizhou Sun,	all	from	the	same	institution.

We	evaluated	MOTIF	on	molecular	property	prediction	
datasets	from	the	Open	Graph	Benchmark	(OGB).	We	
pretrained GNNs	using	MOTIF	and	state-of-the-art	baselines	
on	the	large	ogbg-molhiv dataset.	Then,	we	emulated	the	
scarcity	of	labels	in	the	real	world	by	finetuning the	pretrained
model	on	all	the	ogbg molecule	datasets	with	only	10%	of	
labels.	The	MOTIF-pretrained model	consistently	performed	
better	than	or	on	par	with	models	pretrained with	the	
baselines	when	transferring	to	a	supervised	finetune task	with	
few	labels.	Furthermore,	the	MOTIF-pretrained model	
outperformed	the	non-pretrained model	by	2.8%	on	average	
(see	Figure	3).

These	results	suggest	that	MOTIF	further	enhances	molecular	
property	prediction	with	few	labels,	which	can	advance	drug	
discovery	and	quantum	chemistry.	Furthermore,	MOTIF	is	
more	interpretable,	as	one	can	inspect	the	motifs	mined	to	
intuit	the	graph	representations	learned.	In	the	future,	we	will	
explore	introducing	a	sampling	loss	term	and	end-to-end	
pooling	for	subgraph	representations.

Figure	3.	We	evaluated	transfer	learning	performance	using	
ROC-AUC.	For	multi-task	prediction,	we	averaged	the	ROC-
AUC	across	all	tasks.	We	report	the	test	result	of	the	best	
model	on	the	validation	set	across	10	runs.


