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Abstract

We propose a MOTIF-driven contrastive framework to pre-
train a graph neural network in a self-supervised manner
so that it can automatically mine motifs from large graph
datasets. Our framework achieves state-of-the-art results on
various graph-level downstream tasks with few labels, like
molecular property prediction.

Introduction
Graph representation learning aids numerous applications,
like predicting properties of molecules (Hu et al. 2020b).
These applications are often low-resource because labels are
expensive to acquire, which makes them amenable to self-
supervised learning. Self-supervised learning is a form of
unsupervised learning in which pseudo-labels intrinsic to the
data provide supervision. There exist self-supervised meth-
ods for learning graph-level representations, including Info-
Graph (Sun et al. 2019), GPT-GNN (Hu et al. 2020c), and
Context Prediction (Hu et al. 2020b).

Furthermore, we initially experimented with a contrastive
self-supervised learning method for graph-level representa-
tions in which the representations of positive subgraph pairs
(i.e. subgraphs from the same graph) are learned to be more
similar while the representations of negative subgraph pairs
(i.e. subgraphs from different graphs) are learned to be more
dissimilar. However, this method was empirically ineffective
because it inherently suffers from false negatives; that is, the
representations of semantically-similar subgraphs from dif-
ferent graphs are erroneously learned to be more dissimilar.

MOTIF Overview
The aforementioned methods fail to leverage the commonal-
ity of significant subgraphs across graphs in a dataset, known
as motifs, which often indicate graph-level semantic proper-
ties (Milo et al. 2002). We propose a MOTIF-driven con-
trastive self-supervised framework (MOTIF) that simultane-
ously trains a graph neural network (GNN) to learn subgraph
representations and clusters these representations based on
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their semantics to mine motifs, thereby pretraining the GNN
for various graph-level downstream tasks.

On each iteration of MOTIF, we obtain subgraph repre-
sentations by sampling subgraphs from a batch of graphs,
passing these subgraphs through the GNN, and pooling node
representations. We subsequently compute a soft assignment
of each subgraph representation to K clusters, each defined
by a center vector. The K center vectors represent motifs
and are interpreted as the semantic meaning shared by sim-
ilar subgraphs. We represent the soft cluster assignments as
a matrix Q, where the ith column is a K-dimensional prob-
ability vector representing how likely the ith subgraph be-
longs to each of the K clusters. Our goal is to optimize Q by
adjusting the cluster centers to maximize the similarity be-
tween subgraph representations and the centers. To prevent
all the subgraphs from being assigned to a single cluster, we
introduce an entropy term and a constraint on Q to force
all the clusters to have similar size. Thereby, computing Q∗

reduces to an optimal transportation problem with a closed-
form solution (Asano, Rupprecht, and Vedaldi 2020).

The elegance of our solution is in that Q∗ provides us
with pseudo-labels with which we can contrastively train
the GNN in a self-supervised manner. We predict the prob-
abilities of each subgraph belonging to the optimal clusters
via representation-center similarity and learn subgraph rep-
resentations to be more similar or dissimilar to the appropri-
ate cluster centers by minimizing the cross-entropy loss.

In our experiments, MOTIF was ineffective when employ-
ing random walk or k-hop neighbor subgraph sampling, as
these methods solely rely on topology without considering
node representations learned by the GNN. To solve this is-
sue, I experimented with many dynamic subgraph samplers
that exploit learned node representations. I implemented the
samplers with PyTorch Geometric (Fey and Lenssen 2019),
writing subgraph visualization notebooks and utilizing ho-
mogeneity, completeness, and intersection over union to
evaluate the quality of subgraphs. Ultimately, to sample sub-
graphs from a graph, I computed the similarities between the
representations of adjacent nodes and normalized them to
produce an affinity matrix A, where Ai,j is the affinity score
between adjacent nodes i and j. I then applied spectral clus-
tering with A to recursively bisect the graph into subgraphs
of multiple sizes (1). Intuitively, as we train the GNN using
the clustering scheme, the representations of nodes belong-



bace bbbp clintox hiv sider tox21 toxcast Average
Non-Pretrain 72.80 ± 2.12 82.13 ± 1.69 74.98 ± 3.59 73.38 ± 0.92 55.65 ± 1.35 76.10 ± 0.58 63.34 ± 0.75 71.19
ContextPred 73.02 ± 2.59 80.94 ± 2.55 74.57 ± 3.05 73.85 ± 1.38 54.15 ± 1.54 74.85 ± 1.28 63.19 ± 0.94 70.65 (-0.7%)
InfoGraph 76.09 ± 1.63 80.38 ± 1.19 78.36 ± 4.04 72.59 ± 0.97 56.88 ± 1.80 76.12 ± 1.11 64.40 ± 0.84 72.11 (+1.3%)
GPT-GNN 75.56 ± 2.49 83.35 ± 1.70 74.84 ± 3.45 74.82 ± 0.99 55.59 ± 1.58 76.34 ± 0.68 64.76 ± 0.62 72.18 (+1.4%)
MOTIF 76.16 ± 2.51 83.78 ± 1.77 77.50 ± 3.35 75.51 ± 0.67 57.28 ± 1.09 76.68 ± 0.36 65.42 ± 0.62 73.19 (+2.8%)

Table 1: We evaluated transfer learning performance using ROC-AUC. For multi-task prediction, we averaged the ROC-AUC
across all tasks. We report the test result of the best model on the validation set across 10 runs.

ing to the same motif will become more similar and cause
motif-like subgraphs to be sampled. Hence, the sampler will
reinforce clustering and vice versa, thereby boosting MO-
TIF’s performance. To reduce the runtime of my sampling
implementation, I introduced multiprocessing and increased
batch, vectorized, and scatter operations.

Results and Discussion
We evaluated MOTIF on molecular property prediction
datasets from the Open Graph Benchmark (OGB) (Hu et al.
2020a). We pretrained GNNs using MOTIF and state-of-the-
art baselines on the large ogbg-molhiv dataset. Then, we em-
ulated the scarcity of labels in the real world by finetuning
the pretrained model on all the ogbg molecule datasets with
only 10% of labels (Hu et al. 2020a). We used the Deeper
Graph Convolutional Network (DeeperGCN) as our GNN
with the recommended model hyperparameters (Li et al.
2020). We used PyTorch and PyTorch Geometric for all im-
plementations (Paszke et al. 2017; Fey and Lenssen 2019).

I implemented and ran pretraining and finetuning for all
baselines. The transfer learning results of the non-pretrained
model, MOTIF-pretrained model, and models pretrained us-
ing the baselines on the ogbg molecule datasets are reported
in Table 1. The MOTIF-pretrained model consistently per-
formed better than or on par with models pretrained with
the baselines when transferring to a supervised finetune task
with few labels. Furthermore, the MOTIF-pretrained model
outperformed the non-pretrained model by 2.8% on average.

These results suggest that valuable graph-level informa-
tion can be extracted by automatically mining motifs from a

Figure 1: Motif-like subgraphs sampled by the dynamic
sampler vs. subgraphs sampled by random walk and k-
hop neighbor samplers. Figure created in collaboration with
Shichang Zhang.

large graph dataset and leveraging the motifs to contrastively
learn graph representations. Compared to the baselines, MO-
TIF further enhances molecular property prediction with
few labels, which can advance drug discovery and quan-
tum chemistry. Furthermore, MOTIF is more interpretable,
as one can inspect the motifs mined to intuit the graph repre-
sentations learned. In the future, we will explore introducing
a sampling loss term and end-to-end pooling for subgraph
representations.
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